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around forest edges and in fragmented landscapes leads to 
increased emissions from standing forest (Laurance et  al. 
1998b, Numata et al. 2011, Chaplin-Kramer et al. 2015). 
Moreover, directional changes in forest composition from 
species with higher to lower wood density (Laurance et al. 
2006a, Michalski et al. 2007) typically reduces the standing 
stocks of carbon in fragmented forests, although this trend 
is not universal (Ziter et al. 2014). Given the rapid rates of 
deforestation and forest fragmentation across the world’s 
tropical rainforest biomes, and the important links among 
species composition, carbon storage and carbon emissions, 
it is important to try and predict the future composition of 
present-day forest fragments.

At least over the first few decades after isolation, most of 
the impacts of forest fragmentation on tree communities are 
driven by edge effects (Olupot 2009, Laurance et al. 2011, 
Benchimol and Peres 2015). Forest edges experience elevated 
wind turbulence (Somerville 1980, Laurance and Curran 
2008) and altered microclimate conditions (Camargo and 
Kapos 1995, Chen et al. 1995, Didham and Lawton 1999, 
Ewers and Banks-Leite 2013) that are linked with increases 

Ecography 40: 26–35, 2017 
doi: 10.1111/ecog.02585

© 2016 The Authors. Ecography © 2016 Nordic Society Oikos
Subject Editor: Nick Haddad. Editor-in-Chief: Miguel Araújo. Accepted 12 September 2016

Habitat fragmentation induces rapid and strong changes 
to rainforest tree communities. For example, there is a loss 
of tree biomass (Laurance et al. 1997) spurred by elevated 
tree mortality, especially among larger trees (Laurance et al. 
2000, Lindenmayer et al. 2012). There is also a proliferation 
of disturbance-adapted tree species (Laurance et al. 2006a, 
Tabarelli and Lopes 2008) and a loss of phylogenetic diver-
sity (Santos et al. 2010). In a few years after isolation, newly 
created forest edges tend to ‘seal’ themselves with dense veg-
etation that reduces the microclimatic changes experienced 
within forest fragments (Didham and Lawton 1999). The 
long generation times of rainforest trees ensures that changes 
to floristic composition will take at least decades, and poten-
tially even centuries, before a new equilibrium community is 
reached (Santos et al. 2010), if it is reached at all.

Such time lags make it difficult to determine the likely 
structure of future tree communities. Nonetheless, there 
is a lot of interest in understanding what the forests of the 
future may look like. Undisturbed tropical forests may 
represent a sizeable sink of atmospheric carbon (Phillips 
et  al. 1998, Lewis et  al. 2009), but habitat degradation 
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A great challenge for ecologists is predicting how communities in fragmented tropical landscapes will change in the future. 
Available evidence suggests that fragmented tropical tree communities are progressing along a trajectory of ‘retrogressive 
succession’, in which the community shifts towards an early or mid-successional state that will persist indefinitely. Here, 
we investigate the potential endpoint of retrogressive succession, examining whether it will eventually lead to the highly 
depauperate communities that characterise recently abandoned agricultural lands. We tested this hypothesis by using neural 
networks to construct an empirical model of Amazonian rainforest-tree-community responses to experimental habitat 
fragmentation. The strongest predictor of tree-community composition in the future was its composition in the present, 
modified by variables like the composition of the surrounding habitat matrix and distance to forest edge. We extrapolated 
network predictions over a 100 yr period and quantified trajectories of forest communities in multidimensional ordination 
space. We found no evidence that forest communities, including those near forest edges, were converging strongly towards 
a composition dominated by just one or two early successional genera. Retrogressive succession may well be stronger in 
fragmented landscapes altered by chronic disturbances, such as edge-related fires, selective logging, or intense windstorms, 
but in this experimental landscape in which other human disturbances are very limited, it is unlikely that forest edge 
communities will fully revert to the species poor assemblages observed in very early successional landscapes.
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in canopy dessication (Stevenson and Coxson 2008, Briant 
et  al. 2010) and tree mortality (Chen et  al. 1992, Brando 
et al. 2014, Badano et al. 2015, Hallinger et al. 2016), and 
those mortality rates increase even more for sites that are close 
to multiple edges (Laurance et  al. 2006b). High mortality 
rates open canopy gaps and create opportunities for seed-
lings and saplings to recruit into the population, so it is no  
surprise that recruitment rates are also higher near forest  
edges than deep inside forest interiors (Chen et  al. 1992, 
Laurance et  al. 2006a, Bouroncle and Finegan 2011). 
The species traits associated with increased mortality and 
recruitment are non-random, with a set of slower-growing 
tree species with high wood density tending to decline in 
abundance whereas faster-growing tree and liana (woody 
vine) species with lower wood density are increasing 
(Laurance et  al. 2006a, Pütz et  al. 2011, Benchimol and 
Peres 2015). As a consequence, the turnover rate of species 
near forest edges is elevated (Laurance et al. 2006a), creat-
ing highly dynamic communities that are changing rapidly 
through time.

The trajectories of tree communities in fragmented 
landscapes are non-neutral (Gilbert et al. 2006) and may be 
approaching species compositions that are reminiscent of 
early successional communities (Tabarelli and Lopes 2008, 
Pütz et al. 2011). Tabarelli and Lopes (2008) and Santos et al. 
(2008) raised the hypothesis that fragmentation may drive 
tree communities through a process of ‘retrogressive succes-
sion’ and toward an early successional state that will persist 
indefinitely. Under this scenario, there will be no long-term 
community recovery from the initial disturbance of habitat 
loss and fragmentation, and the community will retain fewer 
species that are more commonly associated with regenera-
tion sequences within forest gaps (Santos et al. 2008). This is 
a convincing hypothesis, with several studies demonstrating 
the proliferation of pioneer tree species near forest edges at 
the expense of shade-tolerant trees (Laurance et  al. 2006a, 
b, Michalski et al. 2007, Santos et al. 2008, Benchimol and 
Peres 2015).

Here, we further refine the concept of retrogressive 
succession, recognising that the hypothesis could be tested in 
two ways: testing for convergence in the functional composi-
tion of the tree community with an emphasis on the traits of 
species; or testing for convergence in the taxonomic compo-
sition of the tree community with an emphasis on the iden-
tity of species. We believe there is ample evidence to support 
the functional trait version of the hypothesis (Laurance et al. 
2006a, b, Michalski et  al. 2007, Santos et  al. 2008, Pütz 
et  al. 2011), and instead focus our attention on the taxo-
nomic version with the goal of determining the taxonomic 
endpoint of retrogressive succession. A full chronosequence 
of forest succession in fully cleared Amazonian landscapes 
begins with just one or two genera, typically Cecropia and/
or Vismia, with the diversity of the successional commu-
nity building through time until the slow-growing, shade-
tolerant species are eventually able to establish themselves as 
dominant. Retrogressive succession has been shown to lead 
to a community composition dominated by a range of early 
and mid-successional tree and vine species (Laurance et al. 
2006a, b, Santos et al. 2008, Tabarelli and Lopes 2008), but 
has not been linked to compositional changes so extreme  
as to generate the highly depauperate communities consisting 

of predominantly Cecropia and/or Vismia spp. that are 
observed at the start of the succession process.

The successional dynamics of tree communities are, 
however, slow and take many decades or centuries to fully 
manifest (Santos et al. 2008), whereas the longest-running 
set of continuous observations of tree-community dynamics 
following forest fragmentation encompasses just 35 yr 
(Laurance et al. 2011). It is possible, then, that given long 
enough time periods the process of retrogressive succession 
may accelerate, slow down or even reverse in the future. The 
increased mortality rates of shade-tolerant species near forest 
edges ensure it is improbable that edge communities will 
recover their pre-fragmentation composition, but continued 
dispersal from forest interiors to forest edges may render it 
unlikely that retrogressive succession will lead to the highly 
depauperate communities that are associated with early 
successional systems.

Here, we attempt to model the trajectories of tree- 
community change in Amazonian rainforest fragments, with 
a view to determining the long-term trajectory of community 
changes under retrogressive succession. We test the specific, 
falsifiable hypothesis that communities in small fragments 
and near forest edges will revert to the community composi-
tion observed in early successional systems. We use data from 
the Biological Dynamics of Forest Fragments Project (Lovejoy 
and Oren 1981, Laurance et al. 2011), taking advantage of 
the longest-running experimental dataset on tree-community 
responses to habitat fragmentation. We quantify observed, 
historical trajectories of change and then extrapolate them 
into the future, examining those trajectories to see if they 
result in communities that converge on community states 
that are characteristic of early successional habitats.

Testing hypotheses concerning future events

Our hypothesis can only be tested if we have a quantita-
tive description of what the tree community in a fragmented 
landscape will look like one century following fragmentation, 
but the longest running experimental dataset that quantifies 
both pre- and post-fragmentation composition extends over 
just 25 yr (Laurance et al. 2006a). Our only option to test 
the hypothesis, then, is to simulate the community compo-
sition 100 yr into the future and conduct our hypothesis 
test on the simulation outputs. We have taken a three-step 
approach to this challenge.

First, we used ordination techniques to simplify a diverse 
tree community to its dominant gradients of community 
composition, and quantified observed changes in composi-
tion that have occurred over several decades (Lovejoy and 
Oren 1981, Laurance et  al. 2011). Ordination allowed us 
to reduce a complex community dataset comprising sev-
eral hundred genera to a handful of uncorrelated axes that 
summarise the patterns of covariation in genera composi-
tion. Thus we were able to model just the small number of 
multivariate axes and avoid the more problematic issue of 
modelling each of the hundreds of genera independently.

Second, we used neural networks to create a statistical, 
non-spatial model of community trajectories through ordi-
nation space that recreated empirically observed trajec-
tories, and extrapolated those trajectories 100 yr into the 
future. Modelling the dynamics of species rich communities 
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represents a tremendous challenge to ecologists (Purves and 
Pacala 2008, Perretti et al. 2013). Neutral models based on 
the Unified Neutral Theory of Biodiversity and Biogeography 
(Hubbell 2001) can be used to examine the dynamics of tree 
communities in continuous forest, but fail to adequately 
capture the elevated rates of species turnover observed in 
fragmented forest (Gilbert et  al. 2006). Individual-based 
models of tree growth, such as the FORMIX3 (Huth and 
Ditzer 2000) or perfect-plasticity approximation models 
(Purves et  al. 2008), can be employed, but these require 
intensive parameterisation using species traits that are 
often unknown for the majority of tropical species. Thus 
we approach this problem by extrapolating trajectories of 
tree plots through ordination space using neural networks. 
Our approach is aspatial and statistical rather than explic-
itly based on a spatial model of the ecosystem processes 
that underlie the ecological patterns we are predicting. This 
approach lacks the detailed mechanistic understanding that 
would come from modelling the ecological processes under-
lying tree community changes directly, but comes with the 
advantage of allowing for highly non-linear interactions that 
can reproduce apparently ‘erratic’ dynamics (Ye et al. 2015). 
Non-linear dynamics are prevalent in our study system: 
previous analyses have demonstrated that forest dynam-
ics here fluctuate markedly through time, and that they are 
acutely sensitive to local landscape and weather conditions 
(Laurance et al. 2007). Parametric and mechanistic models 
typically lack the flexibility to reproduce non-linear dynam-
ics and have little predictive power compared to model-free 
forecasting approaches (Perretti et al. 2013, Ye et al. 2015), 
of which neural networks are just one examplar.

Third, we treated the simulated, 100-yr-in-the-future 
community as if it were observed community data and used 
those ‘observations’ to test our hypothesis. We quantified 
the multi-dimensional distance between the coordinates 
defining the location of successional genera in ordination 
space and the coordinates defining the location of plots at 
the beginning and end of the simulation. We used paramet-
ric statistics to test for convergence towards communities 
dominated by the successional genera. Statistical significance 
tests should be applied to simulation results with caution 
(White et al. 2014), but was appropriate for our analyses. We 
retained just one degree of freedom per vegetation plot and 
did not, therefore, artificially inflate the number of degrees 
of freedom in our significance tests (White et al. 2014), and 
because we have used equation-free neural networks the 
null hypothesis is not known to be false a priori by simple 
examination of model parameters (White et al. 2014).

Methods

Data collection

We used tree community data from the Biological Dynamics 
of Forest Fragments Project (Lovejoy and Oren 1981), 
collected from a 1000 km2 area in central Amazonia. The 
dataset has been widely used and described elsewhere 
(Laurance et  al. 2011). Importantly, the fragments in this 
study area have been protected from edge related fires, 
selective logging, hunting, fuelwood gathering, and other 

human disturbances that often affect other fragmented trop-
ical landscapes (Laurance and Cochrane 2001). The frag-
ments have also been fenced to prevent incursions of cattle. 
The experiment isolated nine forest fragments that range in 
size from one to 100 ha, and a total of 40 forest plots of 1 ha 
were distributed among the fragments (n  23 plots) and in 
eight control sites (n  17) in nearby continuous forest. All 
plots were sampled prior to fragmentation and have since 
been resampled at roughly 5-yr intervals. The data used here 
encompassed plots that were surveyed either three (n  7 
plots), four (n  19), five (n  6) or six (n  8) times over 
a 25-yr period and are the same as presented by Laurance 
et al. (2006a). All individuals were identified at least to genus 
and this is the taxonomic level of our analyses. We chose 
to work at genus rather than species level because almost 
90 % of tree species at this site are too rare for analysing 
individually, having  1 individual per hectare, and because 
congeneric species tend to be ecologically similar in this 
study area (Laurance et al. 2004). There was a total of 267 
genera represented in the dataset, with an average of 123 
genera present in each plot.

Characterising tree communities and trajectories  
of change

Our goal was to quantify the trajectories of tree communi-
ties through time, so we required a quantitative ordination 
method rather than a semi-quantitative method such as the 
widely used non-metric multidimensional scaling (Legendre 
and Legendre 1998). We chose to use principal coordinates 
analysis (PCoA) that can work with any distance metric 
(Legendre and Legendre 1998). There are many distance 
metrics available to ecologists and the choice of metric can 
exert a strong influence on the results of ordination analy-
ses (Legendre and Legendre 1998), so to determine the best 
distance metric for our purposes we compared the propor-
tion of variance explained by PCoAs fitted using each of 13 
different distance metrics as implemented in the R package 
‘vegan’ (Oksanen et  al. 2011). The Morisita distance met-
ric explained the highest proportion of the variation in 
community composition and was therefore retained in all 
future analyses.

We used PCoA on a Morisita dissimilarity matrix to 
characterise the relative floristic composition of all plot  
census observations. All plot  census combinations were 
entered into the same PCoA, ensuring trajectories of change 
in ordination space are comparable among time periods. 
To determine the appropriate number of ordination axes, 
we compared the distribution of explained variance among 
the ordination axes to the expected distribution of vari-
ance according to a broken stick model (Legendre and 
Legendre 1998). There were six PCoA axes that explained 
more variance than expected by chance and were retained 
in future analyses.

Neural networks, network averaging and network 
predictions

We used neural networks to explain observed, and predict 
future, changes in tree community composition. Neural 
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data set as a measure of network fit (Priddy and Keller 2005), 
thereby testing the ability of a fitted model to recreate patterns 
observed in a new dataset. Because the final network fit, and 
estimated network weights, might depend on which observa-
tions fell into the training and validation sets, we created a new 
random 80:20 split of the data each time a neural network was 
fitted. The final weights of a neural network can also depend 
on the initial starting values used, so we fitted each network 
three times using random starting values and a random data 
split, and recorded the sum of squares error calculated on the 
validation data set for each network fit. Not all network fitting 
attempts converged on solutions, and we attempted to obtain 
solutions a maximum of nine times per network combina-
tion. If none of the nine attempts converged, that network 
combination was removed from all future analyses.

Neural networks are often criticised for being a ‘black 
box’ approach to fitting models (Priddy and Keller 2005, 
Hastie et al. 2009), but it is possible to quantify the contri-
bution of individual predictor variables to the final model fit 
using saliency scores (Priddy and Keller 2005). For each of 
the network combinations that we fitted, we calculated the 
saliency of each variable in the network. To obtain an average 
estimate of saliency, we first standardised the saliency scores 
for each individual network such that the sum of all scores 
was equal to one, and took the weighted average saliency 
score for each predictor variable across all models using the 
inverse sum of squares error as a measure of network fit as a 
weight. Thus predictor variables with high average saliency 
scores represent variables that make large contributions to 
neural networks that fit the data well.

To generate predictions of community change, we aver-
aged the predictions arising from the set of best networks, 
defined as those that fell within 2 AIC points of the best-fit-
ting network (Burnham and Anderson 2002). We predicted 
the new value of tree community composition for each forest 
plot, getting our final prediction by averaging the predictions 
arising from the set of best networks. To determine the accu-
racy of our predictions, we compared network predictions 
with the observed changes in our testing dataset, thereby 
accurately gauging our level of prediction error (Hastie et al. 
2009). We had two 5-yr time periods represented in our test-
ing dataset, effectively allowing us to test the accuracy of our 
models to make predictions over a 10 yr period.

Network predictions were iterated to simulate future tra-
jectories of change for a 100 yr period. Static predictors in 
the model, such as fragment area and edge distance, were 
kept constant for each tree plot in each of the time steps 
of the simulation. Similarly, we specified a five-year census 
interval for all tree plots into the future. Dynamic predictors, 
such as the height of the matrix vegetation and PCoA scores, 
were updated at each time step. For example, the community 
composition observed at time 0 was used as a predictor for 
estimating community composition at time 1, and the pre-
dicted community composition at time 1 was used in turn to 
predict community composition at time 2, and so on.

Testing the end point for tree communities under 
retrogressive succession

We tested whether retrogressive succession will lead to tree 
communities near forest edges and in small fragments that 

networks were chosen for their ability to simultaneously fit 
non-linear models to multiple response variables. All neu-
ral networks were fitted using the R package ‘neuralnet’ 
(Günther and Fritsch 2010, Fritsch and Günther 2012).

We had six response variables in our neural networks, 
representing plot  census locations on the first six ordi-
nation axes from the PCoA described above. As predic-
tors, we included the ordination values from the time step 
before, allowing for the fact that the best predictor of a plot’s 
future state is likely to be its present state. We also used 
two metrics representing forest fragmentation, one being 
log10-transformed fragment area (sites in continuous forest 
were given an arbitrary area of 10 000 ha after Didham et al. 
(1998)), and the other being log10-transformed distance to 
nearest edge. We included the height of Cecropia and Vismia 
in the matrix habitat surrounding the fragment, as such 
regrowth near fragments can buffer edge effects and reduce 
edge-related tree mortality (Mesquita et al. 1999). Cecropia 
and Vismia dominate regrowth in the matrix surrounding 
forest fragments at the BDFFP, with the former dominant 
on soils that were not burned and the latter dominant on 
soils that were burned. Height was estimated as a func-
tion of time since fragmentation based on a growth model 
of central Amazonian secondary forests (Neeff and Santos 
2005). Finally, we included the year of the plot survey to 
allow for temporal dynamics in large-scale environmental 
conditions such as regional climate that may impact all plots 
simultaneously (Laurance et  al. 2014), and the number of 
years between plot censes (inter-survey internal) to allow for 
the fact that larger changes are expected to be observed over 
bigger time periods.

There are no formal guidelines on how to generate model-
averaged predictions for neural networks, so we developed 
an approach consistent with approaches to model averag-
ing used in parametric statistics. Model selection of a neural 
network must choose the optimal subset of predictor vari-
ables, as well as the optimal number of hidden nodes. Too 
few hidden nodes can mean the model does not have enough 
flexibility to capture nonlinearities in the data (Hastie et al. 
2009), but too many hidden nodes can lead to overfitting and 
poor predictive performance (Lee 2001, Priddy and Keller 
2005). We set an arbitrary range of hidden nodes with the 
minimum number being equal to the number of predictor 
variables in the network and the maximum to be five times 
the number of predictor variables, and fitted neural networks 
with all values between the minimum and maximum number 
of hidden nodes for each combination of predictor variables. 
All sets of predictor variables included the six ordination axes, 
to which we added all combinations of the six fragmentation 
and survey date variables. In total, we fitted 2343 separate 
network combinations (63 combinations of 12 predictor 
variables times a maximum of 60 hidden nodes).

We split the data into three, allowing us to independently 
train, validate and then test our network predictions (Hastie 
et  al. 2009). First, we used data from the first three transi-
tion periods in the tree dataset for training and validating the 
model, randomly selecting 80% of these observations to use 
in model training and leaving 20% for model validation. The 
final two transition periods were retained for model testing. 
Because our goal was to use the neural networks for predic-
tion, we used the sum of squared errors on the validation 
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through time near edges (Fig. 1a). We fitted a total of 3843 
neural networks, of which 1721 fell within 2 AIC points 
of the best model. Such a large number of models suggests 
there was little difference among neural networks in terms of 
their predictive power. Saliency scores demonstrated that the 
strongest predictor of community composition was compo-
sition in the time step before, with the six ordination axes 
selected as the six most salient variables across all fitted neural 
networks (Fig. 2). The height of Cecropia and Vismia in the 
matrix had intermediate saliency scores while fragmentation 
variables, such as fragment area and distance to edge, exerted 
relatively weak effects.

There was a very high correlation between observed and 
predicted values across all prediction intervals and ordina-
tion axes combined (r130  0.96, p  0.001), and for both 
prediction intervals (r  0.94, p  0.001) and for all six 
ordination axes (r  0.93, p  0.001) separately. Linear 
regression between the observed and predicted values fitted 
a line with an intercept that did not differ from zero (inter-
cept  –0.0002, SE  0.0015, p  0.87) but the slope dif-
fered from the 1:1 relationship (slope  0.723, SE  0.019; 
p  0.001), indicating that the network predictions had a 
tendency to overestimate small observed values and underes-
timate large values (Fig. 3).

Extrapolating the neural networks 100 yr into the future 
predicted a slight tendency for plots in continuous forest 
and those located far from edges to converge in the first two 
axes of ordination space. By contrast, predictions for plots 
in small fragments and near edges had no consistent pattern 
of convergence (Fig. 1b), although we note that the neural 
networks were making predictions in six dimensions and the 
figure presents just two of those.

Network predictions provided little support for the 
hypothesis that retrogressive succession might lead to highly 
depauperate, early successional communities. Convergence to 

are dominated by a limited number of early successional spe-
cies. To do this, we took the six-dimensional coordinates of 
Cecropia and Vismia, the two genera that dominate recently 
abandoned land in these landscapes, and quantified the 
Euclidean distance in multi-dimensional ordination space 
between these two genera and plots at the beginning of 
the simulation, corresponding to their observed composi-
tion immediately prior to fragmentation, and at the end of 
the simulation, corresponding to their predicted composi-
tion 100 yr after fragmentation. We calculated the change 
in Euclidean distance for each plot, hereafter termed the 
‘convergence to succession’; negative values indicated plots 
that have communities predicted to converge towards the 
successional genera, while positive values indicated the 
opposite. Convergence to succession was calculated sepa-
rately for the Cecropia and Vismia centroids, and used as 
a response variable in a multiple regression examining the 
influence of matrix type (Cecropia, Vismia or both), habi-
tat fragmentation (log10-transformed distance to edge and 
log10-transformed fragment area), and their two-way interac-
tions. The regression was run separately for convergence to 
each of the two successional genera. We expected to detect 
significant interaction effects between matrix type and habi-
tat fragmentation, with plots located near forest edges or 
in small fragments and surrounded by a matrix of Cecropia 
should have trajectories tending toward the Cecropia  
centroid and vice versa for fragments in a matrix of Vismia.

Results

The first two axes of the PCoA explained 27 and 16% of the 
variation in community composition respectively, and the 
six significant axes explained a cumulative total of 83% of 
the variance. There were large changes in tree communities 

Figure 1. (a) The observed distribution of tree communities through time in ordination space over a 25 yr period. (b) Predicted locations 
of forest plots in ordination space 100 yr after fragmentation. Only the first two of six PCoA axes are plotted on both panels. Points in (a) 
show the composition of forest plots prior to fragmentation, with the temporal trajectory of each plot traced by a grey line that ends with 
the most recent observation (a) or with the predicted location after 100 yr (b). Symbols represent the distance to the nearest forest edge for 
each plot.
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edge (convergence to Vismia: F2,31  7.28, p  0.003; con-
vergence to Cecropia: F2,31  9.78, p  0.001), but not in the 
expected direction. Plots far from edges showed little conver-
gence in their distance to either Cecropia or Vismia regardless 
of matrix type, but plots near edges tended to diverge away 
from the Cecropia and Vismia centroids (Fig. 4).

Discussion

Predicting trajectories of biodiverse communities under 
global change represents a major challenge for ecologists 
and conservation biologists. It is already possible to do this 
in general terms, such as highlighting a tendency for ani-
mal-dispersed tree species (Harrison et al. 2013) and tree 
species with high wood density (Michalski et  al. 2007), 
to decline in abundance in and fragmented defaunated 
forests. Statements like these are, however, highly qualita-
tive and give little in the way of quantitative predictions. 
Numeric questions such as what proportion of species 
will decline vs increase in abundance, how large the abun-
dance changes will be, and what the composition of future 
communities will be, remain unanswered. Here, we have 
attempted to make quantitative predictions of future com-
munity composition changes for an Amazonian rainforest 
tree community.

Neural networks represent a powerful new method 
for extrapolating trajectories of community change. Our 
approach of averaging predictions across many possible 
neural networks generated strong predictions of commu-
nity change that accurately recreated observed trajectories 
of tree community change over a 10-yr period (Fig. 3).  
Moreover, equation-free modelling approaches have been 
demonstrated to generate more accurate predictions of 
future ecosystem states than parametric models based 
on the biology of species (Perretti et  al. 2013, Ye et  al. 
2015). Parametric models themselves are often difficult 
to parameterise for diverse tropical communities where 
species traits are unknown for the majority of species, 
although there are notable examples where this has been 
achieved (Bohlman and Pacala 2012, Farrior et al. 2016). 
This gives us a basis for holding reasonable confidence in 
our ability to extrapolate community changes further into 
the future, although we recognise the inherent decline 
in prediction accuracy with increasing timeframes of the 
prediction.

We also highlight the limitations of using phenomeno-
logical models – such as the equation-free neural network 
approach we employed – over the use of mechanistic models 
that attempt to recreate the ecological processes that gen-
erate community changes (Huth and Ditzer 2000, Gilbert 
et  al. 2006, Purves and Pacala 2008). Mechanistic models 
do not, as yet, have the predictive power of phenomenologi-
cal, equation-free approaches (Perretti et al. 2013, Ye et al. 
2015), but the predictions arising from phenomenologi-
cal models have limited utility if the underlying processes 
determining community trajectories change in the future. 
We see the development of better mechanistic models that 
are able to more accurately predict the composition of forests 
over hundred-year timeframes as an exciting, and important, 
challenge for forest ecologists.

Vismia was negative for plots surrounded by a Vismia matrix 
whereas plots surrounded by Cecropia moved away from 
the Vismia centroid (F2,31  34.0, p  0.001). However, the 
same pattern was also predicted for convergence to Cecropia, 
with plots surrounded by Vismia converging towards 
the Cecropia centroid and those surrounded by Cecropia 
diverging away (F2,31  25.8, p  0.001). Both models had 
a significant interaction between matrix type and distance to 

Figure 2. Median weighted saliency scores from 3843 fitted neural 
networks predicting tree community composition in a fragmented 
landscape. Bars represent median values and whiskers represent the 
0.025 and 0.975 quantiles.

Figure 3. Prediction accuracy across a 10-yr period corresponding 
to two survey periods. The black line is fitted using linear regression 
through all points, and the dashed grey line represents the 1:1 rela-
tionship. Predicted values are the mean result from 1721 fitted neu-
ral networks. Points represent the locations of vegetation plots in 
six-dimensional ordination space, with numbers representing the 
six ordination axes.
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Benitez-Malvido et  al. 2014, Aragon et  al. 2015) and on 
the composition of fragment communities more widely 
(Brudvig et  al. 2017). On average, matrix type exerted a 
slightly higher influence than distance to edge and fragment 
size (Fig. 2), but more detailed analyses of trajectories dem-
onstrated that communities near forest edges were not pre-
dicted to converge towards communities dominated solely 
by the dominant successional genera Cecropia and Vismia 
(Fig. 4). Instead, our model predictions reinforced previous 
analyses of these datasets that have shown that the trajec-
tories of change among edge communities appear incon-
sistent (Laurance et al. 2007), united only by the fact that 
their composition diverges away from that of continuous 
forest (Collins et al. 2017). One possibility to explain this 
is the landscape divergence effect (Laurance et al. 2007), in 
which small differences in starting conditions can result in 
large differences to the observed impacts of forest fragmen-
tation on communities. Our finding that present-day com-
munity composition is the strongest and most consistent 
predictor of future composition supports this, and opens 
the possibility that forest fragmentation may influence tree 
communities very differently depending on their composi-
tion prior to fragmentation. New experiments, such as the 
Stability of Altered Forest Ecosystems (SAFE) Project in 
Sabah, Malaysia (Ewers et al. 2011), present an opportunity 
to test this hypothesis more widely and across a wider range 
of taxa.

Perhaps because of the landscape-divergence effect, 
we found little support for the hypothesis that retrogres-
sive succession will drive forest-edge communities to an 
early successional state. We stress that this should not 

Using our phenomenological models, we found that 
community composition in the future is best predicted by 
community composition in the present, with the fragmenta-
tion variables of fragment area and distance to edge appearing 
to have relatively weak influences on community trajectories 
(Fig. 2). This stands in apparent contrast to a large litera-
ture that emphasises the impacts of habitat fragmentation on 
community changes (Laurance et al. 1998a, 2006a, Hill and 
Curran 2005, Santos et al. 2008, Tabarelli and Lopes 2008, 
Olupot 2009, Briant et  al. 2010, Bouroncle and Finegan 
2011, Pütz et  al. 2011, Benchimol and Peres 2015). We 
stress, however, that the relatively weak effects of fragmenta-
tion variables does not imply that they are weak determi-
nants of community change in these fragmented landscapes. 
Rather, in any given time step of just five years, the low num-
ber of mortality and recruitment events relative to the num-
ber of individuals who survive for a five-year period ensures 
fragmentation variables are not strong enough to result in 
complete turnover of tree communities. Fragmentation vari-
ables, therefore, do not override the dominant influence of 
the pre-existing community composition over short time 
scales such as the five-year census intervals in our data, but 
over long time scales fragmentation clearly influences the 
direction and magnitude of community changes (Laurance 
et al. 2006a).

Our network predictions found that composition of the 
surrounding matrix of modified habitats influenced the 
trajectories of community composition within fragments, 
in line with previous studies that found matrix composi-
tion influences the tree species being recruited inside forest 
fragments (Nascimento et al. 2006, Chabrerie et  al. 2013, 

Figure 4. The role of distance to forest edge and matrix type on predicted trajectories of community composition over a 100 yr time frame. 
Values on the y-axis represent convergence (negative values) or divergence (positive values) of communities in multivariate space towards 
the successional genera Cecropia (a) and Vismia (b). If retrogressive succession leads to the highly depauperate communities observed in 
early successional landscapes, we would expect to see in panel (a) that plots with Cecropia in the matrix, either alone (dashed line) or in 
combination with Vismia (solid line), would have a positive slope indicating plots near forest edges converge towards the multidimensional 
centroid for the genus Cecropia; and in panel (b), that plots with Vismia in the matrix, either alone (dotted line) or in combination with 
Cecropia (solid line), would have a positive slope indicating plots near forest edges converge towards the multidimensional centroid for the 
genus Vismia.
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successional species observed in recently abandoned matrix 
habitats. So, while it is reasonable to characterise communities 
as changing towards one that is reminiscent of successional 
communities and that is dominated by species that have 
functional traits associated with successional communities, 
we do not believe these communities will collapse into the 
heavily depauperate communities comparable to the earliest 
stages of forest succession on abandoned land.
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